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The stability of steady motions of a rigid body has been the subject of repeated study. 

Crammel [l] and Rumiantsev [2] studied the stability of uniform rotations of a heavy rigid 

body with a fixed point. Kuz’min [3] 
field. Mozalevskaia [S] 

and Irtegov [4] have accounted for the Newtonian force 
investigated the stability of uniform rotations of a gyrostat in a po- 

tential field. Stability of helical motions in an unbounded ideal incompressible fluid was 

dealt with by Liapunov [6] under the assumption that the surface bounding the body was sin- 

gly connected. Kharlamov generalized the equations of motion of a rigid body in a fluid to 

the case of a body bounded by a multiply connected surface [7] and in addition generalized 

the analogy noted by Steklov in 181. U sing this analogy we can obtain not only the equations 

of motion of a heavy rigid body with a fixed point as a particular case of the Kharlamov eq- 

uations, but also the more general equations of motion of a gyrostat in a Newtonian field. It 

follows that the conditions of stability for the above cases should also follow from the con- 
ditions of stability of motion of a body in a fluid, postulated in [7]. This generalization lends 

therefore some interest to the nnalysis of the stability of helical motions in a fluid of a 

body bounded by a multiply connected surface. 

1. Differential equations of motion are 171 

dP,l& = (Pa + li,)o, - (Ps i- h&n, t- (h3 -.- p,)R, -- ((12 -- p*)z?e (4.1) 

dRr / dr =-- Cl@, -~~ e,,li,? (12.1) 

where the remaining four equations are obtained by the cyclic interchange of indices denoted 
by the symbol (123). Moreover, 

(1.2) 

The following three integrals are well known 

T -- piRi =z h (1.3) 

(Pi _t- J,r) RI + (Pe -i Ai?) 11? A- (P3 4 h,j Ji3 :- nr, Rre _1- ReZ -I- i(n? = -- R? (1.4) 

Let us now suppose that the origin of a moving coordinate system associated with the 
body is situated at its center and. that its axes coincide with the principal axes of the im- 
pulsive momentum ellipsoid. Then the kinetic energy of the system will be 

2T = S [ oIlPI? -I- 2~~ P,Rl -j- ZC~Z (PtR:! -I- P:Rl) + 2bl,f?tHz +bllR1’] (1.5) 

where S denotes summation of three terms obtained from the expression under the S-sign by 
cyclic interchange of the indices 1, 2 and 3. 

2. By the Routh criterion [9] we need the minimum value of the integral (1.3) with (1.4) 
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satisfied, in order to obtain the sufficient conditions of stability of motion of a body in a 

fluid. We shall investigate the stability of motion relative to P,, P,, P,, R,, R, R,. Let 

us construct the Lagrangian 

F = h - sm - 1f2aR3 (2.1) 
where s and ~7 are the Lagrange multipliers and let us write the necessary conditions for the 

extremum of the function F with respect to PI,..., R, 

aFJaPi~= 0, aF/anj=o 

This, together with (1.2). yields 

oi = sR,, ~~--~=;s(P~$-h,)-f-"R~ (2.2) 
Substituting now w, and a, - pi into (1.1) we see., that the function F assumed its extre- 

ma1 value at the steady helical motions. First three F,qs. of (2.2) give the variables P, in 
the terms of R, 

P, =: --i/a,, {(cl1 - s)R, -t- cl&, -f- c,J,] W3) (2.3) 

Here and in the following the symbol (123) means that the remaining two equations are 
obtained by the cyclic interchange of indices. 

Let 6t. &. &’ ‘11e q72e 773 d enote the incremental growth of P, ,..., R, respectively, in 

the perturbed motion. Relations (2.1), (1.31, (1.4) and (1.5) yield 

2S3F = S[%E’, f (L,, - t’)V1 -I- 2c,, (E~Q $ Ez’lJ -1 2 b,?q,q:! t- 2(cLl - s)Elql] + . . . 

(PI + h)% -t (Pa -t ~~)% -t (J’S -t &)‘ls + II,E., + A’,$? -I- q$, + . . . = 6m 

R,Q 1- R,q- + r1,q3 -i . . . f ‘l&P 

Performing the substitution 

with (2.3) taken into account, we have 

+ Al3 = b12 __ i% -- ‘) ‘I3 (&I c2.J - s) c31Ql3 -.~ _ --.-_ _ - 
011 a?2 033 

(123) 

(2.4) 

R,q, -I- R,q2 + I& = 'IJW (2.5) 
Sufficient conditions of stability of helical motions are obtained from the conditions of 

the positive definiteness of the quadratic form (2.4) with the conditions (2.5). The form 6 2 F 
will, under the conditions (2.5), be positive definite if the priucipai diagonal minors of the 

order higher than three of the following determinant [lOI are positive 

0 0 ( -x, -X-. -xx Ir, R? RO 6m 
0 0 RI RZ Rf n 0 0 '/&R2 

-x1 RI (&---a) .A13 -4s u (I 0 0 
-X3 R, A31 (‘b-6) &I 0 0 0 0 
-x3 Y R3 Aa1 43 (43-a) 0 0 0 0 

RI 0 0 0 0 au 0 0 0 
RT3 0 0 0 0 0 0z.j 0 0 
Ra 0 0 0 0 0 0 am 0 

6m ‘i3i5R” 0 0 0 0 0 0 0 
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The minors are given by 

As - M > 0, A8 = a11a23u33 [M + WV) > 0 

6, = aiM + R,gN > 0, A, = attap,ara [N (6m)J -I- L&n&l -k 1/rK(6R2)21 > 0 

11, = a,a&I f (all&’ -I- uJ?,~)N > 0 

8 = Rf / (111 -!- Ro” I a,, -I- Ra2 I aa 

M= S [(A,, - o)(R,X, - RrX# + ZA,, (R,X, - R,X,)(R,X, - R,X,)l 

N - S {[(A,, -- o)(A,, - a) - &*1fh2 + &&,A,, - A,, (&a - dhR2) 

L = 9 {&I,, - @(A,, - a) - AP?lRIX1 + s&4,, - Al2 (A.?, - a)l(R&, + &X1)? 
R = S {[(Ar, - u)(113r - a) - A,,*lX31 + 2M,t-%r - At, (Ax, - @1X,X,) + 

f {(At, - o) [(A zc - @(A 33 - a) - &?I -I A,,M,,A,, - d&4,, - @I + 
+AI [4&u - A,, bb - @I, 0 

Conditions of stability depend on the restrictions imposed on the perturbations, and may 
vary from case to case. 

1) Perturbations leave the integrals (1.4) unaltered; sufficient condition of stability is, 
that 

Al> 0, M+8N>O 
2) If 6m f 0 and RR2 = 0, then the conditions become 

M> 0, N>O 
3) If6m=Oand8R2~0,then 

hf > 0, M -t SN>O, K>O 

is sufficient. 
4) Let us now consider the case when the perturbations are unrestricted (both integrals 

m and R2 vary). 
Putting X= 8m/6R2 we shall write the condition Ao > 0 as 

NV= -!- Lx + ‘J,K > 0 

When N > 0, the condition (2.6) holds for any x, provided that 

(2.6) 

LZ -KN<O 
If N < 0, (2.6) will hold if x lies within the interval ( x1, x2 ) where x, and x2 are the 

dota of the following Eq. 

Nxt -t Lx -k ‘laK = 0 

Finally, if we assume that the integrals (1.4) vary f reely, then we must only consider the 
came N > 0; 

nr > 0, N > 0, LZ--KN<O 

will then represent the sufficient conditions of stability. 

3. The following analogy was noted by Kharlamov in [71. Putting in (1.5) 

‘4;l (i = j) 
a,j = ( b = I eAi (i=: I) 

0 (i# i)’ *I 0 iif A’ 
cij = 0, Pi = ‘4,q 

we obtain, from (1.1). 

A tdo, I dr = (A z - A J (0209 - &R,H,) + I,o, - &02 + p2R3 - p3R2 

dR, / dt = ugR2 - o,R, VW 
which formally coincide with the equations of motion of a gyrostat in a central Newtonian 
field. These equations possess the following known integrals 

T - PiRi = h’, (A,@, + IJR, -I- (A pop -I- A,)R, -I- (A,% -I- &)R, = m 

R,= _t I&= -I- R,P = Rx = iI 



On the stability helieai motions of a body in a fluid 275 

Fe easily see that we can obtain the conditions of stahirity of uniform rotation of a gy- 

rostat, from the conditions of stability of the steady helical motions of the body in a fluid. 

The following two conditions are sufficient to eusunr the stability of steady rotations of a 

gyrostat under arbitrary perturbations: 

M > 0, N>O 

while the perturbations leaving the value of the surface integral unchanged will only require 

n0 0, 11f + (.4,R,a -t .4&z + AsI?zs)N > 0 (3.1) 

AI = SET (p -- A,)fPo (A, - A,)R& - l&h, -I- Z&fZ, N - R”S (p - li,)(P - A,lRsa 
(3.2) 

as sufficient conditions. Here o) = J is the angulnr velocity of a body rotating; about the 
vertical, while !I and p are given by 

Q ZZ 02 I_ 8, a=-np 

For a rigid body (A 

t 

= 0) the stability conditions obtained from (3.1) coincide with the 

conditions of Kuz’min 33. tVhen the perturbations are arbitrary, then we find that the suffi- 

cient stability conditions are more strict for a rigid body, and are given by 

nf > 0, N>O (M :-- 40&S (p --_ rl,)(A, - As)2R*Wj) 

where N has the form of (3.2). ‘These conditions coincide with those obtained frwll the con- 
ditions given f51. 
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